\qquad
Quantum Number Practice Worksheet

1. Summarize:

The principal quantum number, \boldsymbol{n}, can have the values of: __ _ _ _ _ etc.
The angular momentum quantum number, \mathbf{l}, can have integer values from \qquad to \qquad .
The magnetic quantum number, $\boldsymbol{m}_{\mathrm{l}}$, can have integer values from \qquad to \qquad .
2. When $n=3,1$ can have values of \qquad .

For the 3d sublevel, 1 has a value of __
\qquad
When $n=4, l$ can have values of \qquad .
For the 4 p sublevel, 1 has a value of \qquad _.

When $n=2, \mathbf{l}$ can have values of \qquad .
For the 2 s sublevel, l has a value of \qquad
3. Summarize:

orbital	s	p	d	f
value of \mathbf{l}				

4. There are five 4 d orbitals. List the quantum numbers for each orbital.

\boldsymbol{n}	\mathbf{l}	$\mathrm{m}_{\mathbf{I}}$

5. Rank the following orbitals in order of increasing energy: $3 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{p}, 1 \mathrm{~s}$, and 3 d .
6. How many orbitals in an atom can have the following quantum number or designation?
a) $3 p$
b) $4 p$
c) $4 p_{x}$
d) $6 d$
e) 5 d
f) $5 f$
g) $n=5$
h) 7 s
7. Answer the following questions:
a) The quantum number \boldsymbol{n} describes the \qquad of an atomic orbital.
b) The shape of an atomic orbital is given by the quantum number \qquad _.
d) The maximum number of orbitals that may be associated with the set of quantum numbers $\mathrm{n}=4$ and $\mathbf{l}=3$ is \qquad _.
e) The maximum number of orbitals that may be associated with the quantum number set $n=3, l=2$, and $m_{l}=-2$ is \qquad -.
f) When $n=5$, the possible values of 1 are \qquad .
g) The maximum number of orbitals that can be assigned to the $n=4$ shell is \qquad .
\qquad
Quantum Number Practice Worksheet
8. (a) For $\mathrm{n}=4$, what are the possible values of 1 ?
(b) For $\mathrm{l}=3$, what are the possible values of m_{1} ?
9. Give the values of $\mathrm{n}, \mathrm{l}, \mathrm{m}_{\mathrm{l}}$ (a) for each orbital in the 4 f sublevel, (b) for each orbital in the $\mathrm{n}=2$ shell.
10. Which of the following sets of quantum numbers are allowed for an electron in an orbital of a hydrogen atom:
(a) $\mathrm{n}=1, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=0$
(b) $\mathrm{n}=3, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=0$
(c) $\mathrm{n}=4, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=-1$
(d) $\mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=2$

Write the designation for the sublevel to which the orbital belongs.
11. What is the maximum number of electrons that can occupy each of the following subshells:
(a) 3 d
(b) 4 s
(c) 2 p
(d) 5 f
12. What is the maximum number of electrons in an atom that can have the following quantum numbers:
(a) $n=3$
(b) $n=4, \mathrm{l}=2$
(c) $\mathrm{n}=4, \mathrm{l}=3, \mathrm{~m}_{\mathrm{l}}=2$
(d) $\mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
13. The quantum numbers listed below are for four different electrons in the same atom. Arrange them in order of increasing energy. Indicate whether any two have the same energy.
(a) $n=4, l=0, m_{l}=0, m_{s}=1 / 2$
(b) $n=3, \mathrm{l}=2, \mathrm{~m}_{\mathrm{l}}=1, \mathrm{~m}_{\mathrm{s}}=1 / 2$
(c) $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}_{\mathrm{l}}=-2, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
(d) $\mathrm{n}=3, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=1, \mathrm{~m}_{\mathrm{s}}=-1 / 2$

