Name: _____ Quantum Number Practice Worksheet

1. Summarize:

The principal quantum number, \mathbf{n} , can have the values of: ______ ___, etc. The angular momentum quantum number, \mathbf{l} , can have integer values from _____ to ____. The magnetic quantum number, $\mathbf{m}_{\mathbf{l}}$, can have integer values from _____ to ____.

When n = 3, l can have values of _____.
 For the 3d sublevel, l has a value of ____.

When n = 4, l can have values of _____. For the 4p sublevel, l has a value of ___.

When n = 2, l can have values of _____. For the 2s sublevel, l has a value of ____

3. Summarize:

orbital	S	р	d	f
value of l				

4. There are five 4d orbitals. List the quantum numbers for each orbital.

n	1	mı

5. Rank the following orbitals in order of increasing energy: 3s, 2s, 2p, 4s, 3p, 1s, and 3d.

6. How many orbitals in an atom can have the following quantum number or designation?

a)	3p	e)	5d
b)	4p	f)	5f
c)	4p _x	g)	n = 5
d)	6d	h)	7s

- 7. Answer the following questions:
 - a) The quantum number *n* describes the ______ of an atomic orbital.
 - b) The shape of an atomic orbital is given by the quantum number _____.
 - d) The maximum number of orbitals that may be associated with the set of quantum numbers n=4 and l =3 is ____.
 - e) The maximum number of orbitals that may be associated with the quantum number set n=3, l =2, and m_l = -2 is ___.
 - f) When n=5, the possible values of l are _____.
 - g) The maximum number of orbitals that can be assigned to the n=4 shell is ____.

Name: _____ Quantum Number Practice Worksheet

Date: _____

- 8. (a) For n = 4, what are the possible values of l?
 (b) For l = 3, what are the possible values of m_l?
- 9. Give the values of n, l, m_1 (a) for each orbital in the 4f sublevel, (b) for each orbital in the n = 2 shell.
- 10. Which of the following sets of quantum numbers are allowed for an electron in an orbital of a hydrogen atom:

Write the designation for the sublevel to which the orbital belongs.

- 11. What is the maximum number of electrons that can occupy each of the following subshells:
 - (a) 3d
 - (b) 4s
 - (c) 2p
 - (d) 5f
- 12. What is the maximum number of electrons in an atom that can have the following quantum numbers: (a) n = 3
 - (b) n = 4, l = 2
 - (c) $n = 4, l = 3, m_l = 2$
 - (d) n = 2, l = 1, $m_l = 0$, $m_s = -\frac{1}{2}$
- 13. The quantum numbers listed below are for four different electrons in the same atom. Arrange them in order of increasing energy. Indicate whether any two have the same energy.
 - (a) n = 4, l = 0, $m_l = 0$, $m_s = \frac{1}{2}$ (b) n = 3, l = 2, $m_l = 1$, $m_s = \frac{1}{2}$ (c) n = 3, l = 2, $m_l = -2$, $m_s = -\frac{1}{2}$ (d) n = 3, l = 1, $m_l = 1$, $m_s = -\frac{1}{2}$